博客
关于我
矩阵可逆的一种刻画方式
阅读量:535 次
发布时间:2019-03-08

本文共 404 字,大约阅读时间需要 1 分钟。

矩阵A满足A + A^T = I,证明其可逆性

矩阵A满足A + A^T = I,我们需要证明A是可逆的。


证明一:反证法

假设A不可逆,那么根据矩阵的理论,存在至少一个非零矩阵x0,使得Ax0 = 0。

考虑x0^T A x0,展开得到:x0^T A x0 = x0^T (A + A^T) x0

由于A + A^T = I,代入得到:x0^T A x0 = x0^T I x0 = x0^T x0

另一方面,展开x0^T A x0,考虑到Ax0 = 0,A^T x0 = (Ax0)^T = 0^T = 0,因此:x0^T A x0 = x0^T 0 = 0

于是得到:x0^T x0 = 0

这意味着x0是一个幂等矩阵且为零矩阵。但这与我们的假设矛盾,因为x0是非零矩阵。这就说明A必须是可逆的。


结论

通过反证法,我们发现矩阵A必须是可逆的,以满足A + A^T = I的条件。因此,A是可逆的矩阵。

转载地址:http://fulnz.baihongyu.com/

你可能感兴趣的文章
node.js url模块
查看>>
Node.js Web 模块的各种用法和常见场景
查看>>
Node.js 之 log4js 完全讲解
查看>>
Node.js 函数是什么样的?
查看>>
Node.js 函数计算如何突破启动瓶颈,优化启动速度
查看>>
Node.js 切近实战(七) 之Excel在线(文件&文件组)
查看>>
node.js 初体验
查看>>
Node.js 历史
查看>>
Node.js 在个推的微服务实践:基于容器的一站式命令行工具链
查看>>
Node.js 实现类似于.php,.jsp的服务器页面技术,自动路由
查看>>
Node.js 异步模式浅析
查看>>
node.js 怎么新建一个站点端口
查看>>
Node.js 文件系统的各种用法和常见场景
查看>>
Node.js 模块系统的原理、使用方式和一些常见的应用场景
查看>>
Node.js 的事件循环(Event Loop)详解
查看>>
node.js 简易聊天室
查看>>
Node.js 线程你理解的可能是错的
查看>>
Node.js 调用微信公众号 API 添加自定义菜单报错的解决方法
查看>>
node.js 配置首页打开页面
查看>>
node.js+react写的一个登录注册 demo测试
查看>>