博客
关于我
矩阵可逆的一种刻画方式
阅读量:535 次
发布时间:2019-03-08

本文共 404 字,大约阅读时间需要 1 分钟。

矩阵A满足A + A^T = I,证明其可逆性

矩阵A满足A + A^T = I,我们需要证明A是可逆的。


证明一:反证法

假设A不可逆,那么根据矩阵的理论,存在至少一个非零矩阵x0,使得Ax0 = 0。

考虑x0^T A x0,展开得到:x0^T A x0 = x0^T (A + A^T) x0

由于A + A^T = I,代入得到:x0^T A x0 = x0^T I x0 = x0^T x0

另一方面,展开x0^T A x0,考虑到Ax0 = 0,A^T x0 = (Ax0)^T = 0^T = 0,因此:x0^T A x0 = x0^T 0 = 0

于是得到:x0^T x0 = 0

这意味着x0是一个幂等矩阵且为零矩阵。但这与我们的假设矛盾,因为x0是非零矩阵。这就说明A必须是可逆的。


结论

通过反证法,我们发现矩阵A必须是可逆的,以满足A + A^T = I的条件。因此,A是可逆的矩阵。

转载地址:http://fulnz.baihongyu.com/

你可能感兴趣的文章
Node.js 模块系统的原理、使用方式和一些常见的应用场景
查看>>
Node.js 的事件循环(Event Loop)详解
查看>>
node.js 简易聊天室
查看>>
Node.js 线程你理解的可能是错的
查看>>
Node.js 调用微信公众号 API 添加自定义菜单报错的解决方法
查看>>
node.js 配置首页打开页面
查看>>
node.js+react写的一个登录注册 demo测试
查看>>
Node.js中环境变量process.env详解
查看>>
Node.js之async_hooks
查看>>
Node.js初体验
查看>>
Node.js升级工具n
查看>>
Node.js卸载超详细步骤(附图文讲解)
查看>>
Node.js卸载超详细步骤(附图文讲解)
查看>>
Node.js基于Express框架搭建一个简单的注册登录Web功能
查看>>
node.js学习之npm 入门 —8.《怎样创建,发布,升级你的npm,node模块》
查看>>
Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
查看>>
Node.js安装及环境配置之Windows篇
查看>>
Node.js安装和入门 - 2行代码让你能够启动一个Server
查看>>
node.js安装方法
查看>>
Node.js官网无法正常访问时安装NodeJS的方法
查看>>